Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Performance Evaluation of Advanced Emission Control Technologies for Diesel Heavy-Duty Engines

1999-10-25
1999-01-3564
To evaluate the performance of a variety of commercially available exhaust emission control technologies, the Manufacturers of Emission Controls Association (MECA) sponsored a test program at Southwest Research Institute (SwRI). The test engine was a current design heavy-duty diesel engine operated on standard No. 2 diesel (368 ppm) and lower sulfur (54 ppm) diesel fuel. Technologies evaluated included: diesel oxidation catalysts (DOCs), diesel particulate filters (DPFs), selective catalytic reduction (SCR), fuel-borne catalysts (FBCs) in combination with filters and oxidation catalysts, and combinations of the above technologies. The program was structured to demonstrate that a variety of exhaust emission control technologies, including exhaust gas recirculation, could be used to substantially reduce emissions from a modern MY 1998 heavy-duty diesel engine.
Technical Paper

Development of Low-Emissions Small Off-Road Engines

1999-09-28
1999-01-3302
The purpose of this project was to modify existing small off-road engines to meet ARB's originally proposed 1999 emissions standards. A particular point was to show that compliance could be attained without the need to redesign the base engines. Four high-sales volume, ARB-certified 1997 model engines were selected from the following categories: 1) handheld two-stroke engine, 2) handheld four-stroke engine, 3) non-handheld side-valve engine, and 4) a non-handheld overhead-valve engine. Engines were selected, procured, and baseline emission tested using applicable ARB test procedures. Appropriate emission control strategies were then selected and applied to the four engines. Emission reduction strategies used included air/fuel ratio optimization, and catalytic aftertreatment. Following the development of the four emission-controlled engines, final, certification-quality emissions tests were performed. All four engines met ARB's original 1999 Tier 2 emission standards after development.
Technical Paper

Development and Validation of a Snowmobile Engine Emission Test Procedure

1998-09-14
982017
An appropriate test procedure, based on a duty cycle representative of real in-use operation, is an essential tool for characterizing engine emissions. A study has been performed to develop and validate a snowmobile engine test procedure for measurement of exhaust emissions. Real-time operating data collected from four instrumented snowmobiles were combined into a composite database for analysis and formulation of a snowmobile engine duty cycle. One snowmobile from each of four manufacturers (Arctic Cat, Polaris, Ski-Doo, and Yamaha) was included in the data collection process. Snowmobiles were driven over various on- and off-trail segments representing five driving styles: aggressive (trail), moderate (trail), double (trail with operator and one passenger), freestyle (off trail), and lake driving. Statistical analysis of this database was performed, and a five-mode steady-state snowmobile engine duty cycle was developed.
Technical Paper

Reactivity and Exhaust Emissions from an EHC-Equipped LPG Conversion Vehicle Operating on Butane/Propane Fuel Blends

1996-10-01
961991
This paper describes experiments conducted to determine Federal Test Procedure (FTP) exhaust emissions, ozone-forming potentials, specific reactivities, and reactivity adjustment factors for several butane/propane alternative fuel blends run on a light-duty EHC-equipped gasoline vehicle converted to operate on liquefied petroleum gas (LPG). Duplicate emission tests were conducted on the light-duty vehicle at each test condition using appropriate EPA FTP test protocol. Hydrocarbon speciation was utilized to determine reactivity-adjusted non-methane organic gas (NMOG) emissions for one test on each fuel.
Technical Paper

Observation of Transient Oil Consumption with In-Cylinder Variables

1996-10-01
961910
Only a limited understanding of the oil consumption mechanism appears to exist, especially oil consumption under transient engine operating conditions. This is probably due to the difficulty in engine instrumentation for measuring not only oil consumption, but also for measuring the associated in-cylinder variables. Because of this difficulty, a relatively large number of experiments and tests are often necessary for the development of each engine design in order to achieve the target oil consumption that meets the requirements for particulate emissions standards, oil economy, and engine reliability and durability. Increased understanding and logical approaches are believed to be necessary in developing the oil-consumption reduction technology that effectively and efficiently accomplishes the tasks of low oil-consumption engine development.
Technical Paper

Heavy-Duty Diesel Hydrocarbon Speciation:Key Issues and Technological Challenges

1993-10-01
932853
Development of methodology for diesel hydrocarbon speciation of C12-C22 compounds and the application of that methodology to determine total ozone forming potential of diesel exhaust emissions is an extremely complicated task. Methodology has already been developed for speciating C1-C12 exhaust emissions from engines and vehicles fueled with gasoline, diesel, and alternate fuels. However, very little or no information is available for exhaust speciation of C12-C22 compounds as sampling and analytical constraints make the collection and analysis of the higher molecular weight compounds extremely challenging. Key issues related to the definition of “hydrocarbons” also need to be addressed prior to promulgation of future reactivity-based legislation for diesels (e.g., Which exhaust hydrocarbon compounds actually exist in gas-phase and participate in atmospheric ozone formation?).
Technical Paper

Conversion of Two Small Utility Engines to LPG Fuel

1993-09-01
932447
Southwest Research Institute (SwRI) converted two small air-cooled, gasoline engines to operate on LPG (sometimes called propane since propane is LPG's major constituent). Typical two- and four-cycle engines were chosen for this investigation. The two-cycle engine used was a McCulloch string trimmer engine with 28 cc displacement. The four-cycle engine used was an L-head, Tecumseh TVS90 with 148 cc displacement. These are typical of engines found on lower cost lawn mowers and string trimmers. The engines were baseline tested on gasoline, converted to LPG, and tested to determine equivalence ratios at which the engines could be operated without exceeding manufacturers' recommended spark plug seat or exhaust temperatures. Engine startability and throttle response was maintained with the LPG conversion. The emissions of the four-cycle engine were measured following the CARB 6-mode emissions test procedure.
Technical Paper

Application of On-Highway Emissions Technology to a Backhoe

1992-04-01
920922
Recent legislation, including the California Clean Air Act of 1988 and the Federal Clean Air Act Amendment of 1990, includes off-road engines, equipment, and vehicles as targets for new exhaust emissions regulations. The Santa Barbara County Air Pollution Control District in cooperation with EXXON USA is conducting a major Low NOx Demonstration Program including mobile sources, construction equipment, and offshore equipment. As a part of this program, an existing backhoe has been retrofitted with a low NOx engine and demonstrated in the field. This paper discusses the work performed to allow Case model 580 backhoes to be retrofitted with Cummins 4BTAA3.9 on-highway turbocharged diesel engines. A standard production conversion kit can be used to mount the new engines in place of the older existing JI Case engines in some models while other newer models already have 4B3.9 engines. In addition, an air-to-air aftercooler and associated plumbing was designed and installed.
Technical Paper

Development of an I/M Short Emissions Test for Buses

1992-02-01
920727
Emissions from existing diesel-powered urban buses are increasingly scrutinized as local, state, and federal governments require enforcement of more stringent emission regulations and expectations. Currently, visual observation of high smoke levels from diesel-powered equipment is a popular indicator of potential emission problems requiring tune-up or engine maintenance. It is important that bus inspection and maintenance (I/M) operations have a quality control “test” to check engine emissions or diagnose the engine state-of-tune before or after maintenance. Ideally, the “emission test” would be correlated to EPA transient emissions standards, be of short duration, and be compatible with garage procedures and equipment. In support of developing a useful “short-test,” equipment was designed to collect samples of raw exhaust over a short time period for gaseous and particulate emissions.
Technical Paper

Toward the Environmentally-Friendly Small Engine: Fuel, Lubricant, and Emission Measurement Issues

1991-11-01
911222
Small engines which are friendly toward the environment are needed all over the world, whether the need is expressed in terms of energy efficiency, useful engine life, health benefits for the user, or emission regulations enacted to protect a population or an ecologically-sensitive area. Progress toward the widespread application of lower-impact small engines is being made through engine design, matching of engine to equipment and task, aftertreatment technology, alternative and reformulated fuels, and improved lubricants. This paper describes three research and development projects, focused on the interrelationships of fuels, lubricants, and emissions in Otto-cycle engines, which were conducted by Southwest Research Institute. All the work reported was funded internally as part of a commitment to advance the state of small engine technology and thus enhance human utility.
Technical Paper

Emission Control Strategies for Small Utility Engines

1991-09-01
911807
Recent approval of emission standards for small utility engines by the California Air Resources Board(1)* suggests that substantial reductions in emissions from small utility engines will soon be required. While 1994 standards may be met with simple engine adjustments or modifications, 1999 standards are much more stringent and may require the use of catalysts in conjunction with other emission reduction technologies. Assessing the feasibility of candidate emission control strategies is an important first step. Various emission reduction technologies were applied to three different 4-stroke engines. Emission tests were conducted to determine the effectiveness of air/fuel ratio changes, thermal oxidation, exhaust gas recirculation, and catalytic oxidation with and without supplemental air. Results of these evaluations, along with implications for further work, are presented. One engine's emissions were reduced below the levels of 1999 ARB standards.
Technical Paper

A Next-Generation Emission Test Procedure for Small Utility Engines - Part 1, Background and Approach

1990-09-01
901595
Measurement of emissions from small utility engines has usually been accomplished using steady-state raw emissions procedures such as SAE Recommended Practice J1088. While raw exhaust measurements have the advantage of producing modal exhaust gas concentration data for design feedback; they are laborious, may influence both engine performance and the emissions themselves, and have no provision for concurrent particulate measurements. It is time to consider a full-dilution procedure similar in principle to automotive and heavy-duty on-highway emission measurement practice, leading to improvements in many of the areas noted above, and generally to much higher confidence in data obtained. When certification and audit of small engine emissions become a reality, a brief dilute exhaust procedure generating only the necessary data will be a tremendous advantage to both manufacturers and regulatory agencies.
Technical Paper

Soak Time Effects on Car Emissions and Fuel Economy

1978-02-01
780083
Five light-duty vehicles were used to investigate HC, CO, and NOx emissions and fuel economy sensitivity to changes in the length of soak period preceding the EPA Urban Dynamometer Driving Schedule (UDDS). Emission tests were conducted following soak periods 10 minutes to 36 hours in length. Each of the first 8 minutes of the driving cycle was studied separately to observe vehicle warm-up. Several engine and fuel system temperatures were monitored during soak and run periods and example trends are illustrated. The extent to which emission rates and fuel consumption are affected by soak period length is discussed.
Technical Paper

Exhaust Emissions from Farm, Construction, and Industrial Engines and Their Impact

1975-02-01
750788
The research program on which this paper is based included both laboratory emission measurements and extrapolation of results to the national population of heavy-duty farm, construction, and industrial engines. Emission tests were made on four gasoline engines and eight diesel engines typical of those used in F, C, and I equipment. Gaseous and particulate emissions were measured during engine operation on well-accepted steady-state procedures, and diesel smoke was measured during both steady-state conditions and the Federal smoke test cycle. Emissions measured were hydrocarbons, CO, CO2, NO, NOx, O2, aliphatic aldehydes, light hydrocarbons, particulate, and smoke. Emission of sulfur oxides (SOx) was estimated on the basis of fuel consumed, and both evaporative and blowby hydrocarbons were also estimated where applicable (gasoline engines only). Data on emissions obtained from this study were compared with those available in the literature, where possible.
Technical Paper

Emissions Control of Gasoline Engines for Heavy-Duty Vehicles

1975-02-01
750903
This paper summarizes an investigation of reductions in exhaust emission levels attainable using various techniques appropriate to gasoline engines used in vehicles over 14,000 lbs GVW. Of the eight gasoline engines investigated, two were evaluated parametrically resulting in an oxidation and reduction catalyst “best combination” configuration. Four of the engines were evaluated in an EGR plus oxidation catalyst configuration, and two involved only baseline tests. Test procedures used in evaluating the six “best combination” configurations include: three engine emission test procedures using an engine dynamometer, a determination of vehicle driveability, and two vehicle emission test procedures using a chassis dynamometer. Dramatic reductions in emissions were attained with the catalyst “best combination” configurations. Engine durability, however, was not investigated.
Technical Paper

Exhaust Emissions from Heavy-Duty Trucks Tested on a Road Course and by Dynamometer

1975-02-01
750901
This is a summary compilation and analysis of exhaust-emission results and operating parameters from forty-five heavy-duty gasoline and diesel-powered vehicles tested over a 7.24-mile road course known as the San Antonio Road Route (SARR); and, for correlative purposes, on a chassis dynamometer.(2) Exhaust samples were collected and analyzed using the Constant Volume Sampler (CVS) technique similar to that used in emission testing of light-duty vehicles. On the road course, all equipment and instrumentation were located on the vehicle while electrical power was supplied by a trailer-mounted generator. In addition to exhaust emissions, operating parameters such as vehicle speed, engine speed, manifold vacuum, and transmission gear were simultaneously measured and recorded on magnetic tape. The forty-five vehicles tested represent various model years, GVW ratings, and engine types and sizes.
Technical Paper

Snowmobile Engine Emissions and Their Impact

1974-02-01
740735
This paper describes a research program on exhaust emissions from snowmobile engines, including both emissions characterization and estimation of national emissions impact. Tests were conducted on three popular 2-stroke twins and on one rotary (Wankel) engine. Emissions that were measured included total hydrocarbons, (paraffinic) hydrocarbons by NDIR, CO, CO2, NO (by two methods), NOx, O2, aldehydes, light hydrocarbons, particulate, and smoke. Emissions of SOx were estimated on the basis of fuel consumed, and evaporative hydrocarbons were projected to be negligible for actual snowmobile operation. During emissions tests, intake air temperature was controlled to approximately -7°C (20°F), and room air at approximately 24°C (75°F) was used for engine cooling. Based on test results and the best snowmobile population and usage data available, impact of snowmobile emissions on a national scale was computed to be minimal.
X